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to changing target priorities.
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model of an occulter science mission are displayed in
the two graphs below.
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Modest enhancements (e.g., a “target slew constraint ™) to existing planning tools
Target-to-Target Cadence (such as SPIKE) would allow preliminary planning of occulter science missions.
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Occulter Science Mission Phases Availability of advanced planning tools would allow examination of tradeoffs

between such aspects as telescope-occulter range, expected overall
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Discovery and characterization mission phases will be interleaved in the timeline Mission O Sequence for an External Occulter queuing strategies, number of visits to each target, number of targets surveyed, Propellant load is kept fixed at 1200 kilograms, however the
with discovery likely a major component early in the mission, and characterization A and propulsion capability. average thrust level decreases for the longer duvation contours
likely dominating the late-mission phase. A. Typical occulter observing configuration.
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Science employing the external occulter will not monopolize telescope time (~10- B. and non-occulter design reference missions , and inter-mission operations should be of propellant load and telescope-oceulter separation. Mission
20% per occulter) and can be interleaved with other telescope science.
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duration varies in this plot. Thrust is fixed at the maximum ion
thruster rating.

) Contours of Number of Targets (4 vists per target)
" Resource Consumptio . .

Fuel, Time-on-Target, and Transit-Time

F On-board fuel is a major constraint on m
N targets.

on duration and number of achievable

E. Deceleration.
Mission planning tools must track critical occulter resources, particularly occulter
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preparation for formation-keeping.
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formation-keeping mode. possible, but higher-fidelity mission simulations are needed.
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